
1

Lab 7: Interfacing FPGA Spartan-6 with AC’97 Codec
EE-459/500 HDL Based Digital Design with Programmable Logic

Electrical Engineering Department, University at Buffalo

Last update: Cristinel Ababei, 2012

1. Objective

The objective of this lab is to demonstrate the use of the National Semiconductor LM4550 AC‘97 audio

codec (IC3), which is available on the Atlys board. We’ll code in VHDL a driver and implement it on the

FPGA to communicate with and control the codec. The driver can select the input into the codec (e.g.,

microphone, line-in) and set the volume – via the slide switches of the Atlys board.

2. Introduction

AC'97 (Audio Codec '97; also MC'97 for Modem Codec '97) is an audio codec standard developed by Intel

Architecture Labs in 1997. The standard is used in motherboards, modems, and sound cards.

Read more about AC’97 here: http://www-inst.eecs.berkeley.edu/~cs150/Documents/ac97_r23.pdf

The Atlys board includes a National Semiconductor LM4550 AC‘97 audio codec (IC3) with four 1/8” audio

jacks for line-out (J5), headphone-out (J7), line-in (J4), and microphone-in (J6). Audio data at up to 18 bits

and 48KHz sampling is supported, and the audio in (record) and audio out (playback) sampling rates can be

different. The microphone jack is mono, all other jacks are stereo. The headphone jack is driven by the

audio codec's internal 50mW amplifier. LM4550 basically serves as an interface between the analog world

of traditional audio components (e.g., headphones and microphones) and the digital world of the FPGA.

Read more about LM4550 here: http://www.ti.com/lit/ds/symlink/lm4550.pdf

3. VHDL driver

This is an example hardware driver used to interface the AC97 audio codec with an FPGA running at 100

MHz. The design can be scaled to other clock speeds by either scaling the internal counters, or instantiating

an onboard PLL to attain a 100 MHz clock. The VHDL code and description of this controller is based on

the work of Tony Storey and Scott Larson [1].

 Figure 1: Block diagram of desired circuit

AC97CMD

command

state machine

AC97

controller
N16

T18

U17

L13
T17

Spartan-6 FPGA
Reset

SDATA_IN

SDATA_OUT

SYNC

12.288

RESET
ready

latching_cmd

cmd_data

cmd_addr 8

16 3

5

SOURCE

VOLUME

CLK

T15

L15

From 100MHz

oscillator

From eight slide

switches

From Atlys’ RESET

push-button

To LM4550 AC97

on Atlys board

http://www-inst.eecs.berkeley.edu/~cs150/Documents/ac97_r23.pdf
http://www.ti.com/lit/ds/symlink/lm4550.pdf

2

The inputs to the controller “AC97 controller” include the CLK (main FPGA oscillator), an active low

reset, a serial data in line, a 12.288 MHz bit clock from the ac97 chip, a 3 bit source selector (slide switches

SW7-5) and a 5 bit volume control (slide switches, SW4-0). The controller’s outputs include a sync signal,

serial data output, and an ac97 active low reset signal for initializing the ac97 (LM4550). There are two

internal signals to sync the main ac97 controller with the “command state machine AC97CMD” (a small

FSM to setup codec's registers). One of these signals pulses every 20us and the other is a signal used for

error checking during the tag phase. Consult the LM4550 data sheet for details on the serial frame

input/output.

The VHDL files can be downloaded on the course website. The downloadable archive contains additional

files (datasheets) including the .ucf file that must be utilized to assign FPGA I/O pins correctly. Its content

is listed here:

PlanAhead Generated physical constraints

NET "SOURCE[2]" LOC = E4;

NET "SOURCE[1]" LOC = T5;

NET "SOURCE[0]" LOC = R5;

NET "VOLUME[4]" LOC = P12;

NET "VOLUME[3]" LOC = P15;

NET "VOLUME[2]" LOC = C14;

NET "VOLUME[1]" LOC = D14;

NET "clk" LOC = L15;

NET "BIT_CLK" LOC = L13;

NET "SDATA_IN" LOC = T18;

NET "SDATA_OUT" LOC = N16;

NET "SYNC" LOC = U17;

NET "AC97_n_RESET" LOC = T17;

NET "n_reset" LOC = T15;

NET "VOLUME[0]" LOC = A10;

4. Synthesis and FPGA programming

Use ISE WebPack to synthesize the entire design and then program the FPGA. Test the whole system using

a microphone and the audio signal from your favorite YouTube music video connected to the MIC and

LINE IN of the Atlys board. Use the slide switches to select between the two inputs and vary the volume.

5. Lab assignment

Read the datasheets of AC97 and of LM4550 to get an understanding of the serial communication. Read the

provided VHDL code and understand how it works – try to sketch the state graphs of the two FSM’s from

Fig.1 above.

Propose and implement a new VHDL design; you should reuse some or the entire VHDL code to do

something different. The given VHDL design hierarchy simply routes the parallel outputs of the controller

back to its parallel inputs. This makes the AC97 talk through from input to output. This process in the top

level file can be replaced by port mapping user components for various signal processing tasks for example.

An excellent example is the following voice-recorder design:

http://web.mit.edu/6.111/www/f2008/handouts/labs/lab4.html

The top-level plan is pretty simple – when recording, store the stream of incoming samples in a memory

(inside FPGA or on Atlys’ memory?), when playing back feed the stored data stream back to the codec.

http://web.mit.edu/6.111/www/f2008/handouts/labs/lab4.html

3

6. Credits and references

[1] Tony Storey and Scott Larson, AC’97 Codec Hardware Driver Example.

http://eewiki.net/display/LOGIC/AC%2797+Codec+Hardware+Driver+Example

[2] http://www.javiervalcarce.eu/wiki/VHDL_Macro:_DC97#cite_note-0

[3] http://www-mtl.mit.edu/Courses/6.111/labkit/audio.shtml

[4] http://web.mit.edu/6.111/www/f2008/handouts/labs/lab4.html

http://eewiki.net/display/LOGIC/AC%2797+Codec+Hardware+Driver+Example
http://www.javiervalcarce.eu/wiki/VHDL_Macro:_DC97#cite_note-0
http://www-mtl.mit.edu/Courses/6.111/labkit/audio.shtml
http://web.mit.edu/6.111/www/f2008/handouts/labs/lab4.html

